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(a) An overview of the binaural synthesis process for the Binaural-MUSDB dataset.

Background

= Immersive experiences (VR / AR) have gained popularity,
requiring realistic audio stimuili.

= Binaural audio goes beyond standard gain-based stereo
panning — filters two-channel audio to create interaural
cues differing in level, time, and spectral content to
simulate the location of a source in space |1, 2].

= Typically reproduced on headphones and has real-time
applications in accessibility [3].

= Binaural music has received minimal attention in the music
information retrieval (MIR) research community, especially
in the task of musical source separation (MSS).

Goal: investigate whether existing (stereo) MSS models
are able to separate binaural mixtures into their respective
stems while preserving spatial characteristics.

Binaural-MUSDB

= Synthesized a binaural version of MUSDB18-HQ (4]
called Binaural-MUSDB to compare the performances
models in both stereo and binaural settings.

= Figure 1a shows the synthesis process using head-related
transfer functions (HRTFs) from the SADIE |l database [5].

= Limited source locations on the horizontal plane to
0 € [—90°, +90°| along the azimuth, with the elevation
fixed at ¢ = 0° (Figure 1b).

= For every song, we assigned each source ¢ to a static
location 6; in increments of 10°.

= Angles for each stem in a single song were sampled
randomly without replacement in the order of vocals,
hass, drums, and other.

= |n a mixture, no two sources were allowed to be located at
the same angle; there was a minimum of 10°separation
(no direct overlap) between each stem.

= Summed the binaural versions of the vocals, drums, bass
and other stems together and normalized the resulting
signal to create the binaural mixtures which were used as
the input to the MSS models.
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Figure 2. Distribution of instrument positions in the test set of
Binaural-MUSDB.
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(b) Binaural-MUSDB: each binaural source signal s; is placed randomly along the

Figure 1

Metrics

Aimed to describe the distortion introduced by the models.

Interaural Cues:

Change (A) in interaural time difference (ITD) and interaural
level difference (ILD) between the estimated stem (8) and the
reference stem (s) [3].

AITD = |ITD(s) — ITD(8) (1)
TDOA(x,t) = L arg max C(t, 7) (2)
AILD = |ILD(s) — ILD(3)| (3)
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Energy Ratios:

Signal to Spatial Distortion Ratio (SSR) captures the spatial dis-
tortion introduced by the separation (ey,.) into the estimated
stem (8).

Signal to Residual Distortion (SRR) quantifies the non-spatial
distortion and errors such as interference and artifacts

(eresid) [é] .
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SSR(8;s) = 10 - logy, (H! HtHQ) (5)
spa
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S Is the projection of s into §.

Results

front horizontal plane at an angle 6; € [—90°, +90°].
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Figure 3. Distributions of spatial metrics aggregated across all sources.

Future Work

Overall (Median)

Stability of random binaural synthesis and diverse HRIRs.

Better understanding of metrics’ sensitivity and
relationship to existing immersive audio metrics.

Robust perceptual evaluation studies.
Evaluate more recent state-of-the-art MSS models.

Train baseline model on binaural data and modify loss
function to penalize spatial distortion.

Listen Here!
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