
Do Music Source Separation Models Preserve Spatial Information in Binaural Audio?

Richa Namballa ¹ Dr. Agnieszka Roginska ¹ Dr. Magdalena Fuentes^{1, 2}

¹Music and Audio Research Laboratory, New York University, New York, USA ²Integrated Design & Media, New York University, New York, USA

(a) An overview of the binaural synthesis process for the Binaural-MUSDB dataset.

(b) Binaural-MUSDB: each binaural source signal s_i is placed randomly along the front horizontal plane at an angle $\theta_i \in [-90^\circ, +90^\circ]$.

Immersive experiences (VR / AR) have gained popularity, requiring realistic audio stimuli.

Background

- Binaural audio goes beyond standard gain-based stereo panning filters two-channel audio to create interaural cues differing in level, time, and spectral content to simulate the location of a source in space [1, 2].
- Typically reproduced on headphones and has real-time applications in accessibility [3].
- Binaural music has received minimal attention in the music information retrieval (MIR) research community, especially in the task of musical source separation (MSS).

Goal: investigate whether existing (stereo) MSS models are able to separate binaural mixtures into their respective stems while preserving spatial characteristics.

Binaural-MUSDB

- Synthesized a binaural version of MUSDB18-HQ [4] called **Binaural-MUSDB** to compare the performances models in both stereo and binaural settings.
- Figure 1a shows the synthesis process using **head-related transfer functions (HRTFs)** from the SADIE II database [5].
- Limited source locations on the horizontal plane to $\theta \in [-90^\circ, +90^\circ]$ along the **azimuth**, with the elevation fixed at $\phi = 0^\circ$ (Figure 1b).
- For every song, we assigned each source i to a static location θ_i in increments of 10°.
- Angles for each stem in a single song were sampled randomly without replacement in the order of vocals, bass, drums, and other.
- In a mixture, no two sources were allowed to be located at the same angle; there was a minimum of 10°separation (no direct overlap) between each stem.
- Summed the binaural versions of the vocals, drums, bass and other stems together and normalized the resulting signal to create the **binaural mixtures** which were used as the input to the MSS models.

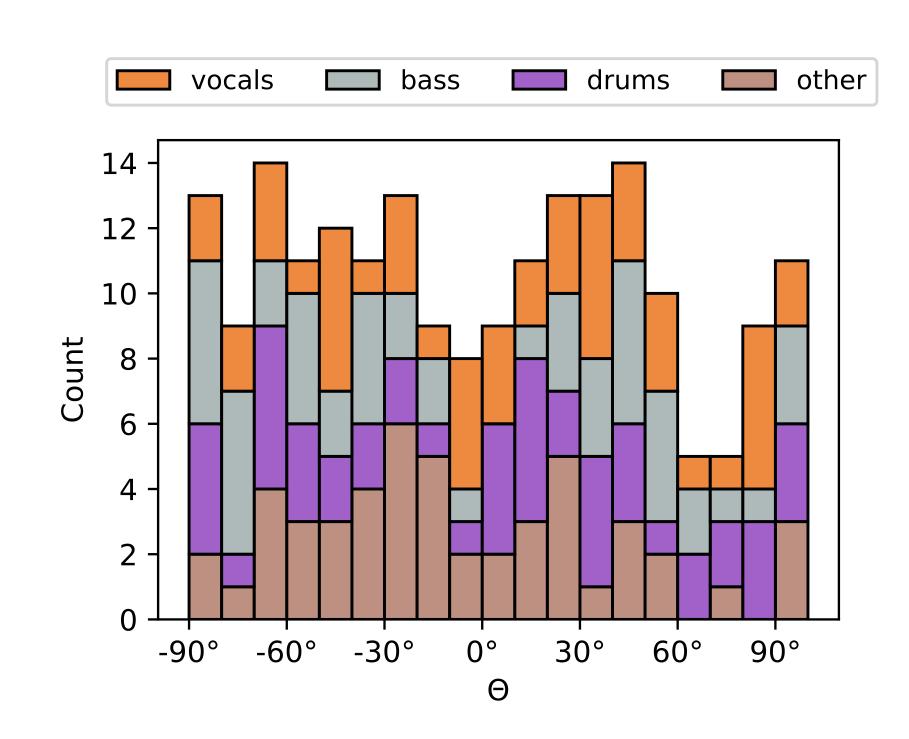


Figure 2. Distribution of instrument positions in the test set of Binaural-MUSDB.

Metrics

Figure 1

Aimed to describe the distortion introduced by the models.

Interaural Cues:

Change (Δ) in interaural time difference (ITD) and interaural level difference (ILD) between the estimated stem ($\hat{\mathbf{s}}$) and the reference stem ($\hat{\mathbf{s}}$) [3].

$$\Delta ITD = |ITD(\mathbf{s}) - ITD(\hat{\mathbf{s}})|$$
 (1)

$$TDOA(\mathbf{x}, t) = \frac{1}{f_s} \cdot \underset{\tau}{\operatorname{arg max}} C(t, \tau)$$
 (2)

$$\Delta ILD = |ILD(\mathbf{s}) - ILD(\hat{\mathbf{s}})| \tag{3}$$

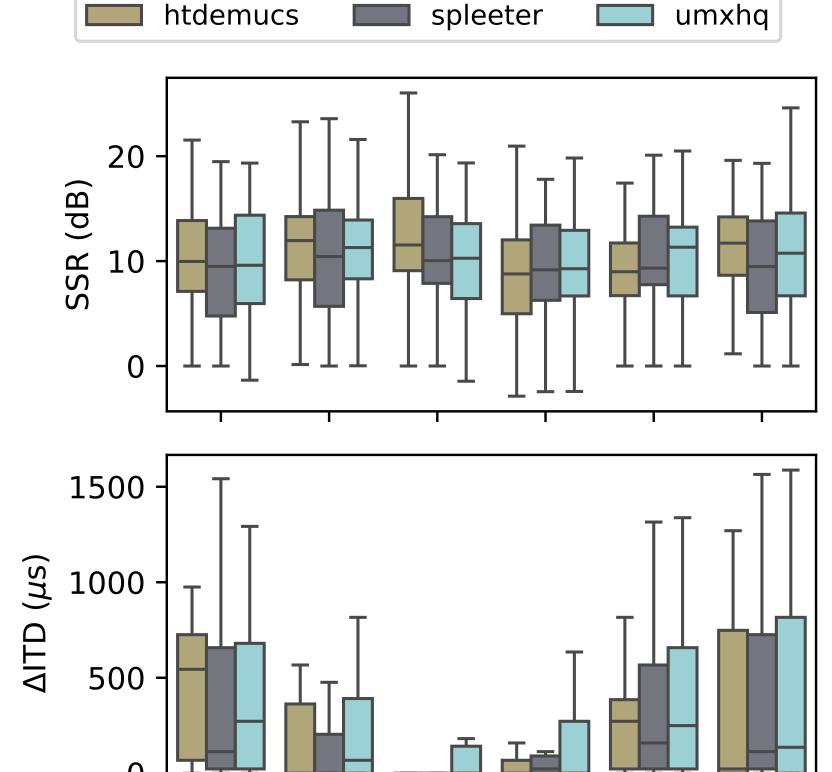
$$ILD(\mathbf{x}) = 10 \cdot \log_{10} \left(\frac{\sum_{k=0}^{N-1} x_L[k]^2}{\sum_{k=0}^{N-1} x_R[k]^2} \right)$$
(4)

Energy Ratios:

Signal to Spatial Distortion Ratio (SSR) captures the spatial distortion introduced by the separation ($\mathbf{e}_{\mathrm{spat}}$) into the estimated stem ($\mathbf{\hat{s}}$).

Signal to Residual Distortion (SRR) quantifies the non-spatial distortion and errors such as interference and artifacts ($\mathbf{e}_{\mathrm{resid}}$) [6].

$$SSR(\mathbf{\hat{s}}; \mathbf{s}) = 10 \cdot \log_{10} \left(\frac{||\mathbf{s}||^2}{||\mathbf{e}_{spat}||^2} \right)$$
 (5)


$$SRR(\mathbf{\hat{s}}; \mathbf{s}) = 10 \cdot \log_{10} \left(\frac{||\mathbf{\tilde{s}}||^2}{||\mathbf{e}_{resid}||^2} \right)$$
 (6)

 $\tilde{\mathbf{s}}$ is the projection of \mathbf{s} into $\hat{\mathbf{s}}$.

Results

Dataset	Model	Overall (Median)				
		SSR (dB) ↑	SRR (dB) ↑	Δ ITD (μ s) \downarrow	Δ ILD (dB) \downarrow	
Binaural	Demucs	10.59	6.91	68.03	0.39	
	OpenUnmix	10.43	3.51	90.7	0.50	
	Spleeter	9.86	2.01	22.68	0.64	
Stereo	Demucs	16.01	7.39	0.00	0.08	
	OpenUnmix	10.73	3.14	0.00	0.12	
	Spleeter	10.78	3.21	0.00	0.12	

Dataset	Model	Bass (Median)				
		SSR (dB) ↑	SRR (dB) ↑	Δ ITD (μ s) \downarrow	\triangle ILD (dB) \downarrow	
Binaural	Demucs	9.13	8.90	476.19	0.20	
	OpenUnmix	10.94	3.37	521.54	0.41	
	Spleeter	10.63	1.53	544.22	0.44	
Stereo	Demucs	17.18	8.36	0.00	0.08	
	OpenUnmix	9.74	1.72	0.00	0.12	
	Spleeter	8.69	1.25	0.00	0.15	

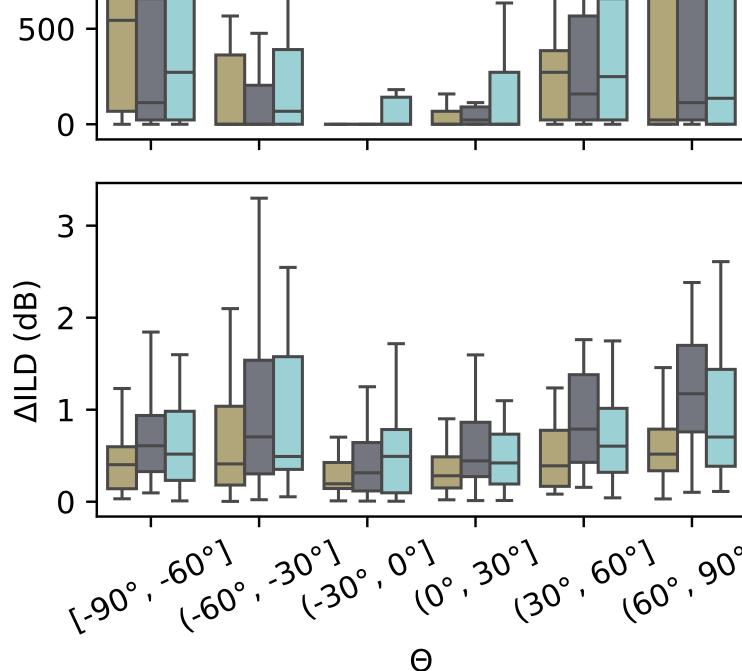


Figure 3. Distributions of spatial metrics aggregated across all sources.

Future Work

- Stability of random binaural synthesis and diverse HRIRs.
- Better understanding of metrics' sensitivity and relationship to existing immersive audio metrics.
- Robust perceptual evaluation studies.
- Evaluate more recent state-of-the-art MSS models.
- Train baseline model on binaural data and modify loss function to penalize spatial distortion.

Listen Here!

References

- [1] L. Rayleigh, "XII. on our perception of sound direction," *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, vol. 13, no. 74, pp. 214–232, 1907.
- [2] A. Roginska and P. Geluso, *Immersive Sound*.

uncompressed version of MUSDB18," Dec. 2019.

- Focal Press, 2017.

 [3] B. Veluri, M. Itani, J. Chan, T. Yoshioka, and S. Gollakota, "Semantic hearing: Programming acoustic scenes with binaural hearables," in *Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology*, pp. 1–15, 2023.
- [4] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, "MUSDB18-HQ an
- [5] C. Armstrong, L. Thresh, D. Murphy, and G. Kearney, "A perceptual evaluation of individual and non-individual HRTFs: A case study of the SADIE II database," *Applied Sciences*, vol. 8, no. 11, p. 2029, 2018.
- [6] K. N. Watcharasupat and A. Lerch, "Quantifying spatial audio quality impairment," in 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 746–750, IEEE, 2024.