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(a) An overview of the binaural synthesis process for the Binaural-MUSDB dataset.
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(b) Binaural-MUSDB: each binaural source signal si is placed randomly along the

front horizontal plane at an angle θi ∈ [−90◦, +90◦].

Figure 1

Background

Immersive experiences (VR / AR) have gained popularity,

requiring realistic audio stimuli.

Binaural audio goes beyond standard gain-based stereo

panning – filters two-channel audio to create interaural

cues differing in level, time, and spectral content to

simulate the location of a source in space [1, 2].

Typically reproduced on headphones and has real-time

applications in accessibility [3].

Binaural music has received minimal attention in the music

information retrieval (MIR) research community, especially

in the task of musical source separation (MSS).

Goal: investigate whether existing (stereo) MSS models

are able to separate binaural mixtures into their respective

stems while preserving spatial characteristics.

Binaural-MUSDB

Synthesized a binaural version of MUSDB18-HQ [4]

called Binaural-MUSDB to compare the performances

models in both stereo and binaural settings.

Figure 1a shows the synthesis process using head-related

transfer functions (HRTFs) from the SADIE II database [5].

Limited source locations on the horizontal plane to

θ ∈ [−90◦, +90◦] along the azimuth, with the elevation

fixed at φ = 0◦ (Figure 1b).

For every song, we assigned each source i to a static
location θi in increments of 10

◦.

Angles for each stem in a single song were sampled

randomly without replacement in the order of vocals,

bass, drums, and other.

In a mixture, no two sources were allowed to be located at

the same angle; there was a minimum of 10◦separation

(no direct overlap) between each stem.

Summed the binaural versions of the vocals, drums, bass

and other stems together and normalized the resulting

signal to create the binaural mixtures which were used as

the input to the MSS models.
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Figure 2. Distribution of instrument positions in the test set of

Binaural-MUSDB.

Metrics

Aimed to describe the distortion introduced by the models.

Interaural Cues:

Change (∆) in interaural time difference (ITD) and interaural
level difference (ILD) between the estimated stem (̂s) and the
reference stem (s) [3].

∆ITD = |ITD(s) − ITD(ŝ)| (1)

TDOA(x, t) = 1
fs

· arg max
τ

C(t, τ ) (2)

∆ILD = |ILD(s) − ILD(ŝ)| (3)

ILD(x) = 10 · log10

(∑N−1
k=0 xL[k]2∑N−1
k=0 xR[k]2

)
(4)

Energy Ratios:

Signal to Spatial Distortion Ratio (SSR) captures the spatial dis-

tortion introduced by the separation (espat) into the estimated

stem (̂s).

Signal to Residual Distortion (SRR) quantifies the non-spatial

distortion and errors such as interference and artifacts

(eresid) [6].

SSR(̂s; s) = 10 · log10

(
||s||2

||espat||2

)
(5)

SRR(̂s; s) = 10 · log10

(
||̃s||2

||eresid||2

)
(6)

s̃ is the projection of s into ŝ.

Results

Dataset Model
Overall (Median)

SSR (dB) ↑ SRR (dB) ↑ ∆ITD (µs) ↓ ∆ILD (dB) ↓

Binaural

Demucs 10.59 6.91 68.03 0.39

OpenUnmix 10.43 3.51 90.7 0.50

Spleeter 9.86 2.01 22.68 0.64

Stereo

Demucs 16.01 7.39 0.00 0.08

OpenUnmix 10.73 3.14 0.00 0.12

Spleeter 10.78 3.21 0.00 0.12

Dataset Model
Bass (Median)

SSR (dB) ↑ SRR (dB) ↑ ∆ITD (µs) ↓ ∆ILD (dB) ↓

Binaural

Demucs 9.13 8.90 476.19 0.20

OpenUnmix 10.94 3.37 521.54 0.41

Spleeter 10.63 1.53 544.22 0.44

Stereo

Demucs 17.18 8.36 0.00 0.08

OpenUnmix 9.74 1.72 0.00 0.12

Spleeter 8.69 1.25 0.00 0.15

0

10

20

SS
R 

(d
B)

0

500

1000

1500

IT
D 

(
s)

[-90°, -6
0°]

(-60°, -3
0°]
(-30°, 0°]

(0°, 30°]
(30°, 60°]

(60°, 90°]
0

1

2

3
IL

D 
(d

B)

htdemucs spleeter umxhq

Figure 3. Distributions of spatial metrics aggregated across all sources.

FutureWork

Stability of random binaural synthesis and diverse HRIRs.

Better understanding of metrics’ sensitivity and

relationship to existing immersive audio metrics.

Robust perceptual evaluation studies.

Evaluate more recent state-of-the-art MSS models.

Train baseline model on binaural data and modify loss

function to penalize spatial distortion.

Listen Here!
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